MATH 1A - MIDTERM 2

PEYAM RYAN TABRIZIAN

Name: \qquad
Instructions: This midterm counts for 20% of your grade. You have 110 minutes to take this exam. Show your steps in a clear and organized fashion, and box your answers whenever possible! Good luck, and may the Chen Lou be with you!

1		15
2		15
$\mathbf{3}$		$\mathbf{5 0}$
4		20
Bonus 1		$5+2$
Bonus 2		5
Total		100

Date: Friday, July 15th, 2011.

1. (15 points) Using the definition of the derivative, calculate $f^{\prime}(4)$, where:

$$
f(x)=\sqrt{x}
$$

2. (15 points) Using the definition of the derivative, calculate $f^{\prime}(x)$, where:

$$
f(x)=x^{2}+x
$$

3. (50 points, 5 points each) Find the derivatives of the following functions:
(a) $f(x)=e^{x}+\cos (x)+1$
(b) $f(x)=x \ln (x)-x$
(c) $f(x)=\frac{e^{x}}{(\sin (x))^{2}}$
(d) $f(x)=\sqrt{\ln \left(x^{2}+1\right)}$
(e) $f(x)=\tan (\tan (\tan (x)))$
(f) $f(x)=(\sin (x))^{x}$
(g) y^{\prime}, where $x^{2}+3 x y+y^{2}=1$
(h) The equation of the tangent line to $y=x^{4}+3 x$ at the point $(1,4)$
(i) The equation of the tangent line at $(1,0)$ to the curve:

$$
\sin \left(y^{2}+x \sin (y)\right)=x^{2}
$$

(j) $f^{\prime \prime}(x)$, where $f(x)=\tan ^{-1}(x)$

Note: In case you don't remember the formula for the derivative of $\tan ^{-1}(x)$, here's a little hint:
Let $y=\tan ^{-1}(x)$, then $\tan (y)=x$, now use implicit differentiation, as well as the facts that the derivative of $\tan (x)$ is $1+\tan ^{2}(x)$ and $\tan \left(\tan ^{-1}(x)\right)=x$.
4. (20 points) Show that the sum of the $x-$ and y - intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is c (where c is a constant).

Hint: At the end, you will need the fact that:

$$
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}=\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2}
$$

(This page is left blank in case you need more space to work on problem 4.)

1A/Math 1A Summer/Exams/Optimus Prime.jpeg

$$
\frac{d \text { Optimus }}{d x}=
$$

Bonus 1 (5 points) Let f be a nonzero function which satisfies:

$$
\left\{\begin{array}{l}
f^{\prime}(x)=f(x) \\
f(0)=1
\end{array}\right.
$$

Note: In particular, this implies $f^{\prime}(\diamond)=f(\diamond)$ where \diamond can be anything!

For this problem, the following property will be useful:
Property: If $g^{\prime}(x)=0$ for all x, then $g(x)=C$, where C is a constant.
(a) Show that $f(x+a)=f(x) f(a)$.

Hint: Fix a (so a is constant) and define $g(x)=\frac{f(x+a)}{f(x)}$.
(b) Show that $f(-x)=\frac{1}{f(x)}$

Hint: Define $g(x)=f(-x) f(x)$.
(c) Show that $f(a x)=f(x)^{a}$

Hint: Define $g(x)=\frac{f(a x)}{f(x)^{a}}$

Note: Do you notice something interesting going on? Remember that in class I defined this function f to be e^{x} (this was the 'awesome Peyam definition'). Just based on this definition, it wasn't obvious whether e^{x} is an exponential function or not. But what you've shown here is that e^{x} is in fact an exponential function, namely:

$$
\left\{\begin{array}{l}
e^{x+a}=e^{x} e^{a} \\
e^{-x}=\frac{1}{e^{x}} \\
e^{a x}=\left(e^{x}\right)^{a}
\end{array}\right.
$$

And this follows just from the fact that e^{x} is a function which is its own derivative!!!

How cool is that? :)
(d) (2 extra points) In fact, the 'reverse' statement is true too! Namely, if f is a function with:

$$
\begin{cases}f(a+b)= & f(a) f(b) \\ f(0)= & 1 \\ f^{\prime}(0)=1\end{cases}
$$

Show that $f(x)=e^{x}$.

Hint: All you need to show is that $f^{\prime}(x)=f(x)$ for all x.

Bonus 2 (5 points) The following bonus problem is meant to show you that derivatives can behave in very strange ways!

Note: See the comments on page 18 for an interesting discussion of this problem!
(a) Find an example of a function f with $\lim _{x \rightarrow \infty} f(x)=0$ but $\lim _{x \rightarrow \infty} f^{\prime}(x)$ does not exist. Prove that your answer is correct.

Hint: $f(x)=\frac{\sin (x)}{x}$ is not an example, because although it goes to 0 , it does not oscillate wildly enough. How can you modify f to make the oscillations worse?
(b) Find an example of a function f that is differentiable at 0 , but whose derivative is not continuous at 0 . Prove that your answer is correct.

Hint: The answer is $f(x)=x^{N} \sin \left(\frac{1}{x}\right)$, where N is an integer which you'll have to choose.

Hint: To show that the derivative is not continuous at 0 , first calculate $f^{\prime}(0)$ using the definition of the derivative, then calculate $f^{\prime}(x)$ using differentiation rules. If f^{\prime} were continuous, then we would have $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)$. Show that this is bogus!

Note: See the discussion on the next page!

Discussion of Bonus 2:

Note: Part (a) has a nice physical interpretation: it says that if you're driving your car towards a certain point your velocity might not necessarily go to 0 , even if you drive for a long time. All is not lost, though! It can be shown that if $\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists, then in fact $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ as well!

Note: In order to avoid strange examples as in Part (b), mathematicians usually require functions not only to be differentiable, but also continuously differentiable, i.e. f^{\prime} must be continuous as well.

We say f is C^{1} if f is once differentiable and f^{\prime} is continuous, f is C^{2} if f is twice differentiable and $f^{\prime \prime}$ is continuous, etc. We have the following inclusions:

$$
C^{0} \supseteq C^{1} \supseteq C^{2} \supseteq \cdots \supseteq C^{\infty} \supseteq C^{\omega}
$$

where \supseteq means 'includes', and C^{0} is the set of continuous functions, C^{∞} is the set of infinitely differentiable functions, and C^{ω} is the set of analytic functions, i.e. the set of functions which have a power series expansion at every point (essentially infinite polynomials, see Math 1B).

The interesting fact is that for complex functions (i.e. $f(z)$ where z is a complex number such as i or $1+i$), we do not have such a distinction, i.e. $C^{0}=C^{1}=C^{2} \cdots=C^{\infty}=C^{\omega}$.

In particular, a complex function that is once differentiable is infinitely differentiable! WOW!!!
(Scrap work)

Any comments about this exam? (too long? too hard?)

